Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.893
Filtrar
1.
BMC Plant Biol ; 24(1): 318, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654190

RESUMEN

BACKGROUND: Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS: Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION: These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.


Asunto(s)
Germinación , Latencia en las Plantas , Triticum , Triticum/genética , Triticum/enzimología , Triticum/fisiología , Latencia en las Plantas/genética , Germinación/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Peroxidasas/genética , Peroxidasas/metabolismo , Plantas Modificadas Genéticamente , Ácido Abscísico/metabolismo , Genes de Plantas
2.
Biochemistry (Mosc) ; 89(Suppl 1): S90-S111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621746

RESUMEN

Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.


Asunto(s)
Halógenos , Peroxidasas , Peroxidasas/metabolismo , Halógenos/metabolismo , Peroxidasa/metabolismo , Peroxidasa del Eosinófilo , Antioxidantes
3.
Physiol Plant ; 176(2): e14294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38634335

RESUMEN

In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.


Asunto(s)
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Triticum/metabolismo , Peróxido de Hidrógeno/metabolismo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidasas/metabolismo , Peroxidasa/metabolismo , Estrés Oxidativo , Azúcares/metabolismo , Malondialdehído/metabolismo
4.
Sci Rep ; 14(1): 8875, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632431

RESUMEN

Nitrogen (N) is an essential element for plant growth, and its deficiency influences plants at several physiological and gene expression levels. Barley (Hordeum vulgare) is one of the most important food grains from the Poaceae family and one of the most important staple food crops. However, the seed yield is limited by a number of stresses, the most important of which is the insufficient use of N. Thus, there is a need to develop N-use effective cultivars. In this study, comparative physiological and molecular analyses were performed using leaf and root tissues from 10 locally grown barley cultivars. The expression levels of nitrate transporters, HvNRT2 genes, were analyzed in the leaf and root tissues of N-deficient (ND) treatments of barley cultivars after 7 and 14 days following ND treatment as compared to the normal condition. Based on the correlation between the traits, root length (RL) had a positive and highly significant correlation with fresh leaf weight (FLW) and ascorbate peroxidase (APX) concentration in roots, indicating a direct root and leaf relationship with the plant development under ND. From the physiological aspects, ND enhanced carotenoids, chlorophylls a/b (Chla/b), total chlorophyll (TCH), leaf antioxidant enzymes such as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT), and root antioxidant enzymes (APX and POD) in the Sahra cultivar. The expression levels of HvNRT2.1, HvNRT2.2, and HvNRT2.4 genes were up-regulated under ND conditions. For the morphological traits, ND maintained root dry weight among the cultivars, except for Sahra. Among the studied cultivars, Sahra responded well to ND stress, making it a suitable candidate for barely improvement programs. These findings may help to better understand the mechanism of ND tolerance and thus lead to the development of cultivars with improved nitrogen use efficiency (NUE) in barley.


Asunto(s)
Hordeum , Hordeum/genética , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Nitrógeno/metabolismo , Peroxidasas/metabolismo , Expresión Génica , Raíces de Plantas/metabolismo
5.
Cell Biochem Funct ; 42(4): e4024, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666564

RESUMEN

Diabetic retinopathy (DR) is a significant complication of diabetes that often leads to blindness, impacting Müller cells, the primary retinal macroglia involved in DR pathogenesis. Reactive oxygen species (ROS) play a crucial role in the development of DR. The objective of this study was to investigate the involvement of sestrin2 in DR using a high-glucose (HG)-induced Müller cell model and assessing cell proliferation with 5-ethynyl-2-deoxyuridine (EdU) labeling. Following this, sestrin2 was upregulated in Müller cells to investigate its effects on ROS, tube formation, and inflammation both in vitro and in vivo, as well as its interaction with the nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway. The findings demonstrated a gradual increase in the number of EdU-positive cells over time, with a subsequent decrease after 72 h of exposure to high glucose levels. Additionally, the expression of sestrin2 exhibited a progressive increase over time, followed by a decrease at 72 h. The rh-sestrin2 treatment suppressed the injury of Müller cells, decreased ROS level, and inhibited the tube formation. Rh-sestrin2 treatment enhanced the expression of sestrin2, Nrf2, heme oxygenase-1 (HO-1), and glutamine synthetase (GS); however, the ML385 treatment reversed the protective effect of rh-sestrin2. Finally, we evaluated the effect of sestrin2 in a DR rat model. Sestrin2 overexpression treatment improved the pathological injury of retina and attenuated the oxidative damage and inflammatory reaction. Our results highlighted the inhibitory effect of sestrin2 in the damage of retina, thus presenting a novel therapeutic sight for DR.


Asunto(s)
Retinopatía Diabética , Especies Reactivas de Oxígeno , Sestrinas , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratas , Masculino , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glucosa/metabolismo , Proliferación Celular/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/patología , Transducción de Señal/efectos de los fármacos , Peroxidasas/metabolismo , Células Cultivadas
6.
Appl Environ Microbiol ; 90(4): e0204423, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38483171

RESUMEN

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.


Asunto(s)
Basidiomycota , Manganeso , Polyporales , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/metabolismo , Aldehídos , Peroxidasas/metabolismo , Ácidos Grasos , Oxidantes
7.
Talanta ; 273: 125964, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521022

RESUMEN

In this study, Cu-Cu2O/PtPd nanocomposites were synthesized and characterized for their peroxidase-like enzyme activity. X-ray diffraction and energy dispersive X-ray spectroscopy analyses confirmed the successful synthesis of the nanocomposites, which exhibited a flower-like morphology and a more uniform dispersion than Cu-Cu2O. The catalytic activity of Cu-Cu2O/PtPd was evaluated using the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB), finding that Cu-Cu2O/PtPd outperformed Cu-Cu2O. The optimal temperature and pH for the catalytic activity of Cu-Cu2O/PtPd were determined to be 40 °C and pH 4.0, respectively. A kinetic analysis revealed that Cu-Cu2O/PtPd followed Michaelis-Menten kinetics and exhibited a higher affinity toward TMB than the horseradish peroxidase enzyme. The catalytic mechanism of Cu-Cu2O/PtPd involved the generation of hydroxyl radicals, which facilitated the oxidation of TMB. Furthermore, the Cu-Cu2O/PtPd nanocomposite was successfully applied for the colorimetric detection of glucose, demonstrating a linear range of 8-90 µM, a detection limit of 2.389 µM, and high selectivity for glucose over other sugars.


Asunto(s)
Colorimetría , Glucosa , Colorimetría/métodos , Cinética , Glucosa/análisis , Peroxidasa/química , Peroxidasas/metabolismo , Peróxido de Hidrógeno/química , Catálisis
8.
J Hazard Mater ; 469: 133918, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430600

RESUMEN

Developing convenient pathways to discriminate and identify multiple aromatic amines (AAs) remains fascinating and critical. Here, a novel three-channel colorimetric sensor array based on FeMo2Ox(OH)y-based mineral (FM) hydrogels is successfully constructed to monitor AAs in tap water. Benefiting from the substantial oxygen vacancies (VO), FM nanozymes exhibit extraordinary peroxidase (POD)-like activities with Km of 0.133 mM and Vmax of 2.518 × 10-2 mM·s-1 toward 3,3',5,5'-tetramethylbenzidine (TMB), which are much better than horseradish peroxidase and most of POD mimics. This reveals that doping Cu and Co into FM (FM-Cu and FM-Co) can change POD activity. Based on various POD activities, TMB and H2O2 are used to generate fingerprint colorimetry signals from the colorimetry sensor array. The analytes can accurately discriminate through linear discriminant analysis, with a detection limit as low as 2.12 × 10-2-0.14 µM. The sensor array can effectively identify and discriminate AA contaminants and their mixtures and has performed well in real sample tests.


Asunto(s)
Colorimetría , Peróxido de Hidrógeno , Peróxido de Hidrógeno/análisis , Peroxidasa de Rábano Silvestre , Minerales , Peroxidasas/metabolismo , Peroxidasa
9.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519954

RESUMEN

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Asunto(s)
Aminoácidos Diaminos , Halomonas , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Presión Osmótica , Perfilación de la Expresión Génica , Peroxidasas/metabolismo
10.
Nat Commun ; 15(1): 2558, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519509

RESUMEN

Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.


Asunto(s)
Proteínas Bacterianas , Peroxidasa , Proteínas Bacterianas/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Microscopía por Crioelectrón , Peroxidasas/metabolismo
11.
Ecotoxicol Environ Saf ; 273: 116130, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394761

RESUMEN

The manganese peroxidase (MnP) can degrade multiple mycotoxins including deoxynivalenol (DON) efficiently; however, the lignin components abundant in foods and feeds were discovered to interfere with DON catalysis. Herein, using MnP from Ceriporiopsis subvermispora (CsMnP) as a model, it was demonstrated that desired catalysis of DON, but not futile reactions with lignin, in the reaction systems containing feeds could be achieved by engineering MnP and supplementing with a boosting reactant. Specifically, two successive strategies (including the fusion of CsMnP to a DON-recognizing ScFv and identification of glutathione as a specific targeting enhancer) were combined to overcome the lignin competition, which together resulted into elevation of the degradation rate from 2.5% to as high as 82.7% in the feeds. The method to construct a targeting MnP and fortify it with an additional enhancer could be similarly applied to catalyze the many other mycotoxins with yet unknown responsive biocatalysts.


Asunto(s)
Lignina , Micotoxinas , Tricotecenos , Lignina/metabolismo , Peroxidasas/metabolismo
12.
Arch Biochem Biophys ; 754: 109931, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382807

RESUMEN

Dye-decolorizing peroxidases (DyPs) have been intensively investigated for the purpose of industrial dye decolourization and lignin degradation. Unfortunately, the characterization of these peroxidases is hampered by their non-Michaelis-Menten kinetics, exemplified by substrate inhibition and/or positive cooperativity. Although often observed, the underlying mechanisms behind the unusual kinetics of DyPs are poorly understood. Here we studied the kinetics of the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroquinones, and anthraquinone dyes by DyP from the bacterium Thermobifida halotolerans (ThDyP) and solved its crystal structure. We also provide rate equations for different kinetic mechanisms explaining the complex kinetics of heme peroxidases. Kinetic studies along with the analysis of the structure of ThDyP suggest that the substrate inhibition is caused by the non-productive binding of ABTS to the enzyme resting state. Strong irreversible inactivation of ThDyP by H2O2 in the absence of ABTS suggests that the substrate inhibition by H2O2 may be caused by the non-productive binding of H2O2 to compound I. Positive cooperativity was observed only with the oxidation of ABTS but not with the two electron-donating substrates. Although the conventional mechanism of cooperativity cannot be excluded, we propose that the oxidation of ABTS assumes the simultaneous binding of two ABTS molecules to reduce compound I to the enzyme resting state, and this causes the apparent positive cooperativity.


Asunto(s)
Benzotiazoles , Peroxidasa , Ácidos Sulfónicos , Thermobifida , Peroxidasa/metabolismo , Thermobifida/metabolismo , Cinética , Peróxido de Hidrógeno , Peroxidasas/metabolismo , Colorantes/metabolismo
13.
J Biol Chem ; 300(3): 105720, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311179

RESUMEN

SET domain proteins methylate specific lysines on proteins, triggering stimulation or repression of downstream processes. Twenty-nine SET domain proteins have been identified in Leishmania donovani through sequence annotations. This study initiates the first investigation into these proteins. We find LdSET7 is predominantly cytosolic. Although not essential, set7 deletion slows down promastigote growth and hypersensitizes the parasite to hydroxyurea-induced G1/S arrest. Intriguingly, set7-nulls survive more proficiently than set7+/+ parasites within host macrophages, suggesting that LdSET7 moderates parasite response to the inhospitable intracellular environment. set7-null in vitro promastigote cultures are highly tolerant to hydrogen peroxide (H2O2)-induced stress, reflected in their growth pattern, and no detectable DNA damage at H2O2 concentrations tested. This is linked to reactive oxygen species levels remaining virtually unperturbed in set7-nulls in response to H2O2 exposure, contrasting to increased reactive oxygen species in set7+/+ cells under similar conditions. In analyzing the cell's ability to scavenge hydroperoxides, we find peroxidase activity is not upregulated in response to H2O2 exposure in set7-nulls. Rather, constitutive basal levels of peroxidase activity are significantly higher in these cells, implicating this to be a factor contributing to the parasite's high tolerance to H2O2. Higher levels of peroxidase activity in set7-nulls are coupled to upregulation of tryparedoxin peroxidase transcripts. Rescue experiments using an LdSET7 mutant suggest that LdSET7 methylation activity is critical to the modulation of the cell's response to oxidative environment. Thus, LdSET7 tunes the parasite's behavior within host cells, enabling the establishment and persistence of infection without eradicating the host cell population it needs for survival.


Asunto(s)
Leishmania donovani , Estrés Oxidativo , Peroxidasas , Proteínas Protozoarias , Animales , Peróxido de Hidrógeno/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dominios PR-SET
14.
Int J Biol Macromol ; 263(Pt 1): 130306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387641

RESUMEN

Peroxidases (EC 1.11.1.7) are involved in a wide range of physiological processes, hence their broad distribution across biological systems. These proteins can be classified as haem or non-haem enzymes. According to the RedOxiBase database, haem peroxidases are approximately 84 % of all known peroxidase enzymes. Class III plant peroxidases are haem-enzymes that share similar three-dimensional structures and a common catalytic mechanism for hydrogen peroxide degradation. They exist as large multigene families and are involved in metabolizing Reactive Oxygen Species (ROS), hormone synthesis and decomposition, fruit growth, defense, and cell wall synthesis and maintenance. As a result, plant peroxidases gained attention in research and became one of the most extensively studied groups of enzymes. This review provides an update on the database, classification, phylogeny, mechanism of action, structure, and physiological functions of class III plant peroxidases.


Asunto(s)
Peroxidasa , Peroxidasas , Peroxidasas/metabolismo , Plantas , Especies Reactivas de Oxígeno/metabolismo , Hemo
15.
Nat Commun ; 15(1): 1239, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336829

RESUMEN

Currently available genetically encoded H2O2 probes report on the thiol redox state of the probe, which means that they reflect the balance between probe thiol oxidation and reduction. Here we introduce the use of the engineered heme peroxidase APEX2 as a thiol-independent chemogenetic H2O2 probe that directly and irreversibly converts H2O2 molecules into either fluorescent or luminescent signals. We demonstrate sensitivity, specificity, and the ability to quantitate endogenous H2O2 turnover. We show how the probe can be used to detect changes in endogenous H2O2 generation and to assess the roles and relative contributions of endogenous H2O2 scavengers. Furthermore, APEX2 can be used to study H2O2 diffusion inside the cytosol. Finally, APEX2 reveals the impact of commonly used alkylating agents and cell lysis protocols on cellular H2O2 generation.


Asunto(s)
Peróxido de Hidrógeno , Peroxidasas , Hemo , Oxidación-Reducción , Peroxidasas/química , Peroxidasas/metabolismo , Compuestos de Sulfhidrilo
16.
Nanoscale ; 16(11): 5561-5573, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38258585

RESUMEN

The prevalence of 3D-printed portable biomedical sensing devices, which are fashioned mainly from plastic and polymer materials, introduces a pressing concern due to their limited reusability and consequential generation of substantial disposable waste. Considering this, herein, we pioneered a ground-breaking advancement, i.e., a 3D-printed metal substrate-based enzyme. Our inventive methodology involved the synthesis of a thermally degraded Fe-based metal-organic framework, DEG 500, followed by its deposition on a 3D-printed metal substrate composed of Ti-Al-V alloy. This novel composite exhibited remarkable peroxidase-like activity in a range of different temperatures and pH, coupled with the ability to detect glucose in real-world samples such as blood and fruit juices. The exceptional enzymatic behaviour was attributed to the diverse iron (Fe) oxidation states and the presence of oxygen vacancies, as evidenced through advanced characterization techniques. Fundamentally, we rigorously explored the mechanistic pathway through controlled studies and theoretical calculations, culminating in a transformative stride toward more sustainable and effective biomedical sensing practices.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Glucosa/química , Oxidación-Reducción , Peróxido de Hidrógeno/química , Peroxidasas/metabolismo , Impresión Tridimensional , Peroxidasa/química
17.
J Inorg Biochem ; 252: 112474, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38176365

RESUMEN

To study how proline residues affect the dynamics of Ω-loop D (residues 70 to 85) of cytochrome c, we prepared G83P and G83A variants of yeast iso-1-cytochrome c (iso-1-Cytc) in the presence and absence of a K73H mutation. Ω-loop D is important in controlling both the electron transfer function of Cytc and the peroxidase activity of Cytc used in apoptosis because it provides the Met80 heme ligand. The G83P and G83A mutations have no effect on the global stability of iso-1-Cytc in presence or absence of the K73H mutation. However, both mutations destabilize the His73-mediated alkaline conformer relative to the native state. pH jump stopped-flow experiments show that the dynamics of the His73-mediated alkaline transition are significantly enhanced by the G83P mutation. Gated electron transfer studies show that the enhanced dynamics result from an increased rate of return to the native state, whereas the rate of loss of Met80 ligation is unchanged by the G83P mutation. Thus, the G83P substitution does not stiffen the conformation of the native state. Because bis-His heme ligation occurs when Cytc binds to cardiolipin-containing membranes, we studied the effect of His73 ligation on the peroxidase activity of Cytc, which acts as an early signal in apoptosis by causing oxygenation of cardiolipin. We find that the His73 alkaline conformer suppresses the peroxidase activity of Cytc. Thus, the bis-His ligated state of Cytc formed upon binding to cardiolipin is a negative effector for the peroxidase activity of Cytc early in apoptosis.


Asunto(s)
Citocromos c , Histidina , Citocromos c/química , Histidina/química , Cardiolipinas , Saccharomyces cerevisiae/metabolismo , Hemo/química , Peroxidasas/genética , Peroxidasas/metabolismo , Concentración de Iones de Hidrógeno , Conformación Proteica
18.
J Inorg Biochem ; 252: 112473, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38199051

RESUMEN

The enzyme dehaloperoxidase (DHP) found in the marine worm Amphitrite ornata is capable of enzymatic peroxidation of 2,4-dichlorophenol (DCP) and 2,4-dibromophenol (DBP). There is also at least one parallel oxidative pathway and the major products 2-chloro-1,4-benzoquinone (2-ClQ) and 2-bromo-1,4-benzoquinone (2-BrQ) undergo aspontaneous secondary hydroxylation reaction. The oxidation and hydroxylation reactions have been monitored by UV-visible spectroscopy, High Performance Liquid Chromatography (HPLC), and mass spectrometry. Evidence from time-resolved UV-visible spectroscopy suggests that the hydroxylations of 2-ClQ and 2-BrQ in the presence of hydrogen peroxide (H2O2) are non-enzymatic spontaneous processes approximately ∼10 and âˆ¼ 5 times slower, respectively, than the enzymatic oxidation of DCP or DBP by DHP in identical solvent conditions. The products 2-ClQ and 2-BrQ have λmaxat 255 nm and 260 nm, respectively. Both substrates, DCP and DBP, react to form a parallel product peaked at 240 nm on the same time scale as the formation of 2-ClQ and 2-BrQ. The 240 nm band is not associated with the hydroxylation process, nor is it attributable to the catechol 3,5-dihalobenzene-1,3-diol observed by mass spectrometry. One possible explanation is that muconic acid is formed as a decomposition product, which could follow decomposition either the catechol or hydroxyquinone. These reactions give a more complete understanding of the biodegradation of xenobiotics by the multi-functional hemoglobin, DHP, in Amphitrite ornata. SYNOPSIS: The decomposition of 2,4-dihalophenols catalyzed by dehaloperoxidase was studied by UV-visible spectroscopy, High Performance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry. Spectroscopic evidence suggests two major products, which we propose are 2-halo-1,4-benzoquinone and 2-halomuconic acid. These complementary techniques give a high-level view of the degradation of xenobiotics in marine ecosystems.


Asunto(s)
Peróxido de Hidrógeno , Peroxidasas , Peróxido de Hidrógeno/química , Peroxidasas/metabolismo , Ecosistema , Hemoglobinas/química , Fenoles/metabolismo , Catecoles
19.
ACS Appl Mater Interfaces ; 16(6): 6849-6858, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38293917

RESUMEN

Rationally designing highly catalytic and stable nanozymes for metabolite monitoring is of great importance because of their huge potential in early disease diagnosis. Herein, a novel nanozyme based on hierarchically structured CuS/ZnS with a highly efficient peroxidase (POD)-mimic capability was developed and synthesized for multiple metabolite determination and recognition via the plasmon-stimulated biosensor array strategy. The designed nanozyme can simultaneously harvest plasmon triggered hot electron-hole pairs and generate photothermal properties, leading to a sharply boosted POD-mimic capability under 808 nm laser irradiation. Interestingly, because of the interaction diversity of the metabolite with POD-like nanomaterials, the unique inhibitory effect of metabolites on the POD-mimic activity could be the signal response as the differentiation. Thus, utilizing TMB as a typical chromogenic substrate in the addition of H2O2, the designed colorimetric biosensor array can produce diverse fingerprints for the three vital metabolisms (cysteine (Cys), ascorbic acid (AA), and glutathione (GSH)), which can be precisely identified by principal component analysis (PCA). Notably, a distinct fingerprint of a single metabolite with different levels and metabolite mixtures is also achieved with a detection limit of 1 µM. Most importantly, cell lysis could be effectively discriminated by the biosensor assay, implying its great potential in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Peróxido de Hidrógeno/química , Peroxidasa/química , Peroxidasas/metabolismo , Colorantes/química
20.
Bioresour Technol ; 395: 130337, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244937

RESUMEN

Addressing the environmental contamination from heavy metals and organic pollutants remains a critical challenge. This study explored the resilience and removal potential of Pleurotus ostreatus GEMB-PO1 for copper. P. ostreatus GEMB-PO1 showed significant tolerance, withstanding copper concentrations up to 2 mM. Its copper removal efficiency ranged from 64.56 % at 0.5 mM to 22.90 % at 8 mM. Transcriptomic insights into its response to copper revealed a marked upregulation in xenobiotic degradation-related enzymes, such as laccase and type II peroxidases. Building on these findings, a co-remediation system using P. ostreatus GEMB-PO1 was developed to remove both copper and organic pollutants. While this approach significantly enhanced the degradation efficiency of organic contaminants, it concurrently exhibited a diminished efficacy in copper removal within the composite system. This study underscores the potential of P. ostreatus GEMB-PO1 in environmental remediation. Nevertheless, further investigation is required to optimize the simultaneous removal of organic pollutants and copper.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Pleurotus , Cobre/metabolismo , Pleurotus/metabolismo , Contaminantes Ambientales/metabolismo , Metales Pesados/metabolismo , Peroxidasas/metabolismo , Lacasa/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...